Saturday, December 22, 2012

GPS - Global Positioning Systems

.
24-6-28 Disabling Ruscian GLONASS (GPS) satellites - Binkov > .23-8-3 The geopolitical space race – Tim Marshall - Ri > .Unexpected Ways Scientists Use GPS - SciShow > .


GPS - Global Positioning Systems ..

The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite systems (GNSS) that provides geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. Obstacles such as mountains and buildings block the relatively weak GPS signals.

The GPS does not require the user to transmit any data, and it operates independently of any telephonic or internet reception, though these technologies can enhance the usefulness of the GPS positioning information. The GPS provides critical positioning capabilities to military, civil, and commercial users around the world. The United States government created the system, maintains it, and makes it freely accessible to anyone with a GPS receiver.

The GPS project was started by the U.S. Department of Defense in 1973, with the first prototype spacecraft launched in 1978 and the full constellation of 24 satellites operational in 1993. Originally limited to use by the United States military, civilian use was allowed from the 1980s following an executive order from President Ronald Reagan. Advances in technology and new demands on the existing system have now led to efforts to modernize the GPS and implement the next generation of GPS Block IIIA satellites and Next Generation Operational Control System (OCX). Announcements from Vice President Al Gore and the Clinton Administration in 1998 initiated these changes, which were authorized by the U.S. Congress in 2000.

During the 1990s, GPS quality was degraded by the United States government in a program called "Selective Availability"; this was discontinued on May 1, 2000 by a law signed by President Bill Clinton.

When selective availability was lifted in 2000, GPS had about a five-meter (16 ft) accuracy. The latest stage of accuracy enhancement uses the L5 band and is now fully deployed. GPS receivers released in 2018 that use the L5 band can have much higher accuracy, pinpointing to within 30 centimeters (11.8 in).

The GPS service is provided by the United States government, which can selectively deny access to the system, as happened to the Indian military in 1999 during the Kargil War, or degrade the service at any time. As a result, several countries have developed or are in the process of setting up other global or regional satellite navigation systems:

Thursday, December 20, 2012

ISS 2022+

22-4-13 Impact of Russia's invasion of Ukraine on International Space Station - Vox > .

ISS - International Space Station


Space Races - Tzu >> .

Geopolitics Podcast: Outer Space & the New Cold War
00:30 Russia-China Lunar Base Partnership
04:34 Cooperation in Outer Space: Private Players?
06:45 Democratization of Outer Space: other actors
09:43 Four Dimensional Geopolitics in the 21st Century
12:37 Return of the New Cold War


ISS - International Space Station ..
Tiangong LMSS - Chinese Space Station 
Warfare in Space ..

The International Space Station (ISS) is a modular space station (habitable artificial satellite) in low Earth orbit. It is a multinational collaborative project involving five participating space agencies: NASA (United States), Roscosmos (Russia), JAXA (Japan), ESA (Europe), and CSA (Canada). The ownership and use of the space station is established by intergovernmental treaties and agreements. The station serves as a microgravity and space environment research laboratory in which scientific research is conducted in astrobiology, astronomy, meteorology, physics, and other fields. The ISS is suited for testing the spacecraft systems and equipment required for possible future long-duration missions to the Moon and Mars.

The ISS programme evolved from the Space Station Freedom, an American proposal which was conceived in 1984 to construct a permanently manned Earth-orbiting station, and the contemporaneous Soviet/Russian Mir-2 proposal with similar aims. The ISS is the ninth space station to be inhabited by crews, following the Soviet and later Russian SalyutAlmaz, and Mir stations and the U.S. Skylab. It is the largest artificial object in space and the largest satellite in low Earth orbit, regularly visible to the naked eye from Earth's surface. It maintains an orbit with an average altitude of 400 kilometres (250 mi) by means of reboost manoeuvres using the engines of the Zvezda Service Module or visiting spacecraft. The ISS circles the Earth in roughly 93 minutes, completing 15.5 orbits per day.

The station is divided into two sections: the Russian Orbital Segment (ROS) is operated by Russia, while the United States Orbital Segment (USOS) is run by the United States as well as many other nations. Roscosmos has endorsed the continued operation of ROS through 2024, having previously proposed using elements of the segment to construct a new Russian space station called OPSEK. The first ISS component was launched in 1998, and the first long-term residents arrived on 2 November 2000 after being launched from the Baikonur Cosmodrome on 31 October 2000. The station has since been continuously occupied for 20 years and 179 days, the longest continuous human presence in low Earth orbit, having surpassed the previous record of 9 years and 357 days held by the Mir space station. The latest major pressurised module, Leonardo, was fitted in 2011 and an experimental inflatable space habitat was added in 2016. Development and assembly of the station continues, with several major new Russian elements scheduled for launch starting in 2021. As of December 2018, the station is funded only until 2025 and may be de-orbited in 2030.

The ISS consists of pressurised habitation modules, structural trusses, photovoltaic solar arraysthermal radiatorsdocking ports, experiment bays and robotic arms. Major ISS modules have been launched by Russian Proton and Soyuz rockets and US Space Shuttles. The station is serviced by a variety of visiting spacecraft: the Russian Soyuz and Progress, the SpaceX Dragon 2, the Northrop Grumman Innovation Systems Cygnus, the Japanese H-II Transfer Vehicle, and, formerly, the European Automated Transfer Vehicle (ATV) and SpaceX Dragon 1. The Dragon spacecraft allows the return of pressurised cargo to Earth, which is used, for example, to repatriate scientific experiments for further analysis. As of November 2020, 242 astronauts, cosmonauts, and space tourists from 19 different nations have visited the space station, many of them multiple times; this includes 152 Americans, 49 Russians, 9 Japanese, 8 Canadians, and 5 Italians.

Saturday, December 15, 2012

NEOs - Near Earth Objects

.

Asteroids impacting Earth can be devastating—killing all the dinosaurs in existence level devastating. But even the asteroids that aren’t mass-extinction huge can be a serious threat. Every few thousand years Earth (a.k.a. you and I) get hit with a massive asteroid the size of the Great Pyramid of Giza, so what is the plan when we get hit with the next asteroid? 

We get hit with an asteroid about the size of the Great Pyramid of Giza every few thousand years, and when the next one hits it could cause massive damage to an entire region. So when we spot the next one coming, what’s the plan? Enter: NASA’s Planetary Defense Coordination office. The Planetary Defense Coordination office is tasked with coming up with ways to protect the planet from threats from outer space. And one of their great ideas is to smack a spacecraft head on with an oncoming asteroid to see if it can be slowed down and deflected. 

Members of NASA, the European Space Agency, and others are informally collaborating with a pair of missions that together are known as the Asteroid Impact and Deflection Assessment, or AIDA. NASA is up first with a mission called the Double Asteroid Redirection Test, or DART

The launch window opens on July 22, 2021, and the goal is to nail an asteroid by late September or early October the following year. Pretty cool, huh? The target DART is aiming at is one of a pair of binary asteroids called Didymos B. Didymos is Greek for twin, hence the Double part of DART. While the asteroid is not on a trajectory to hit Earth, it is an ideal candidate to see just how much of an impact will affect it because Didymos B is a moonlet 160 meters across that’s orbiting the much larger asteroid Didymos A, and as luck would have it, from our perspective it passes in front and behind the larger body, causing changes in the system’s brightness that we can measure. When DART hits Didymos B at 6.6 kilometers per second, the asteroid’s speed will change by a fraction of a percent, but that’s enough to change the time it takes to orbit Didymos A by several minutes. Enough to be detected by telescopes roughly 11 million kilometers away here on Earth. And not any old spacecraft will do when it comes to smashing into Didymos B.

sī vīs pācem, parā bellum

igitur quī dēsīderat pācem praeparet bellum    therefore, he who desires peace, let him prepare for war sī vīs pācem, parā bellum if you wan...