Tuesday, December 25, 2012

Debris - Space

2019 Truth About Space Debris - ReEn > .
24-3-6 Increasing Possibility of War in Space - Wendover > .
23-8-3 The geopolitical space race – Tim Marshall - Ri > .
22-3-26 Profits, Sovereignty and Security: New Space Economy | DW > .
22-2-23 New Space Race is More Insane than Ever - RealLifeLore > .
How 100,000 Satellites Will Change Earth Forever by 2040 - Real > .
Space - CuDr >> .


Orbit graphic 

Space debris (also known as space junk, space pollution, space waste, space trash, or space garbage) is defunct human-made objects in space—principally in Earth orbit—which no longer serve a useful function. These include derelict spacecraft—nonfunctional spacecraft and abandoned launch vehicle stages—mission-related debris, and particularly numerous in Earth orbit, fragmentation debris from the breakup of derelict rocket bodies and spacecraft. In addition to derelict human-built objects left in orbit, other examples of space debris include fragments from their disintegration, erosion and collisions, or even paint flecks, solidified liquids expelled from spacecraft, and unburned particles from solid rocket motors. Space debris represents a risk to spacecraft.

Space debris is typically a negative externality—it creates an external cost on others from the initial action to launch or use a spacecraft in near-Earth orbit—a cost that is typically not taken into account nor fully accounted for in the cost by the launcher or payload owner. Several spacecraft, both manned and unmanned, have been damaged or destroyed by space debris. The measurement, mitigation, and potential removal of debris are conducted by some participants in the space industry.

As of October 2019, the US Space Surveillance Network reported nearly 20,000 artificial objects in orbit above the Earth, including 2,218 operational satellites. However, these are just the objects large enough to be tracked. As of January 2019, more than 128 million pieces of debris smaller than 1 cm (0.4 in), about 900,000 pieces of debris 1–10 cm, and around 34,000 of pieces larger than 10 cm (3.9 in) were estimated to be in orbit around the Earth. When the smallest objects of human-made space debris (paint flecks, solid rocket exhaust particles, etc.) are grouped with micrometeoroids, they are together sometimes referred to by space agencies as MMOD (Micrometeoroid and Orbital Debris). Collisions with debris have become a hazard to spacecraft; the smallest objects cause damage akin to sandblasting, especially to solar panels and optics like telescopes or star trackers that cannot easily be protected by a ballistic shield.

Below 2,000 km (1,200 mi) Earth-altitude, pieces of debris are denser than meteoroids; most are dust from solid rocket motors, surface erosion debris like paint flakes, and frozen coolant from RORSAT (nuclear-powered satellites). For comparison, the International Space Station orbits in the 300–400 kilometres (190–250 mi) range, while the two most recent large debris events—the 2007 Chinese antisat weapon test and the 2009 satellite collision—occurred at 800 to 900 kilometres (500 to 560 mi) altitude. The ISS has Whipple shielding to resist damage from small MMOD; however, known debris with a collision chance over 1/10,000 are avoided by maneuvering the station.

Sunday, December 23, 2012

FOBS - Fractional Orbital Bombardment System

.
24-3-6 Increasing Possibility of War in Space - Wendover > .



The Fractional Orbital Bombardment System (FOBS) was a nuclear-weapons delivery system developed in the 1960s by the Soviet Union. One of the first Soviet efforts to use space to deliver weapons, FOBS envisioned launching nuclear warheads into low Earth orbit before bringing them down on their targets.

Like a kinetic bombardment system but with nuclear weapons, FOBS had several attractive qualities: it had no range limit, its flight path would not reveal the target location, and warheads could be directed to North America over the South Pole, evading detection by NORAD's north-facing early warning systems.

The maximum altitude would be around 150km. Energetically, this would require a launch vehicle powerful enough to be capable of putting the weapon 'into orbit'. However the orbit was only a fraction of a full orbit, not sustained, and so there would be much less need to control a precise orbit, or to maintain it long term.

The Baikonur Cosmodrome (Космодро́м Байкону; Kosmodrom Baykonur) is a spaceport in an area of southern Kazakhstan leased to Russia.

The Cosmodrome is the world's first spaceport for orbital and human launches and the largest (in area) operational space launch facility. The spaceport is in the desert steppe of Baikonur, about 200 kilometres (120 mi) east of the Aral Sea and north of the river Syr Darya. It is near the Tyuratam railway station and is about 90 metres (300 ft) above sea level. Baikonur Cosmodrome and the city of Baikonur celebrated the 63rd anniversary of the foundation on 2 June 2018.

The spaceport is currently leased by the Kazakh Government to Russia until 2050, and is managed jointly by the Roscosmos State Corporation and the Russian Aerospace Forces.

The shape of the area leased is an ellipse, measuring 90 kilometres (56 mi) east–west by 85 kilometres (53 mi) north–south, with the cosmodrome at the centre. It was originally built by the Soviet Union in the late 1950s as the base of operations for the Soviet space program. Under the current Russian space program, Baikonur remains a busy spaceport, with numerous commercial, military, and scientific missions being launched annually. All crewed Russian spaceflights are launched from Baikonur.

Both Sputnik 1, the first artificial satellite, and Vostok 1, the first human spaceflight, were launched from Baikonur. The launch pad used for both missions was renamed Gagarin's Start in honor of Russian Soviet cosmonaut Yuri Gagarin, pilot of Vostok 1 and first human in space.

sī vīs pācem, parā bellum

igitur quī dēsīderat pācem praeparet bellum    therefore, he who desires peace, let him prepare for war sī vīs pācem, parā bellum if you wan...