A forerunner of modern horizontal-axis wind generators was in service at Yalta, USSR in 1931. This was a 100 kW generator on a 30-meter (98 ft) tower, connected to the local 6.3 kV distribution system. It was reported to have an annual capacity factor of 32 percent, not much different from current wind machines.
In the autumn of 1941, the first megawatt-class wind turbine was synchronized to a utility grid in Vermont. The Smith-Putnam wind turbine only ran for 1,100 hours before suffering a critical failure. The unit was not repaired, because of shortage of materials during the war.
https://en.wikipedia.org/wiki/Wind_turbine
A windpump is a type of windmill which is used for pumping water. Windpumps were used to pump water since at least the 9th century in what is now Afghanistan, Iran and Pakistan. Windmills were later used extensively in Europe, particularly in the Netherlands and the East Anglia area of Great Britain, from the late Middle Ages onwards, to drain land for agricultural or building purposes.
Multi-bladed wind pumps can be found worldwide and are manufactured in the United States, Argentina, China, New Zealand, and South Africa. A 16 ft (4.8 m) diameter wind pump can lift up to 1600 US gallons (about 6.4 metric tons) of water per hour to an elevation of 100 ft with a 15 to 20 mph wind (24–32 km/h). However they take a strong wind to start so they turn over the crank of the piston pump. Wind pumps require little maintenance—usually only a change of gear box oil annually. An estimated 60,000 wind pumps are still in use in the United States. They are particularly attractive for use at remote sites where electric power is not available and maintenance is difficult to provide.
A common multi-bladed windpump usefully pumps with about 4%–8% of the annual windpower passing through the area it sweeps] This lower conversion is due to poor load matching between wind rotors and fixed-stroke piston pumps.
https://en.wikipedia.org/wiki/Windpump
Multi-bladed wind pumps can be found worldwide and are manufactured in the United States, Argentina, China, New Zealand, and South Africa. A 16 ft (4.8 m) diameter wind pump can lift up to 1600 US gallons (about 6.4 metric tons) of water per hour to an elevation of 100 ft with a 15 to 20 mph wind (24–32 km/h). However they take a strong wind to start so they turn over the crank of the piston pump. Wind pumps require little maintenance—usually only a change of gear box oil annually. An estimated 60,000 wind pumps are still in use in the United States. They are particularly attractive for use at remote sites where electric power is not available and maintenance is difficult to provide.
A common multi-bladed windpump usefully pumps with about 4%–8% of the annual windpower passing through the area it sweeps] This lower conversion is due to poor load matching between wind rotors and fixed-stroke piston pumps.
https://en.wikipedia.org/wiki/Windpump
A solar-powered pump is a pump running on electricity generated by photovoltaic panels or the radiated thermal energy available from collected sunlight as opposed to grid electricity or diesel run water pumps. The operation of solar powered pumps is more economical mainly due to the lower operation and maintenance costs and has less environmental impact than pumps powered by an internal combustion engine (ICE). Solar pumps are useful where grid electricity is unavailable and alternative sources (in particular wind) do not provide sufficient energy.
https://en.wikipedia.org/wiki/Solar-powered_pump
Solar-powered pump - Wikipedia
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.